Sensorimotor Experience Influences Recovery of Forelimb Abilities but Not Tissue Loss after Focal Cortical Compression in Adult Rats
نویسندگان
چکیده
Sensorimotor activity has been shown to play a key role in functional outcome after extensive brain damage. This study was aimed at assessing the influence of sensorimotor experience through subject-environment interactions on the time course of both lesion and gliosis volumes as well as on the recovery of forelimb sensorimotor abilities following focal cortical injury. The lesion consisted of a cortical compression targeting the forepaw representational area within the primary somatosensory cortex of adult rats. After the cortical lesion, rats were randomly subjected to various postlesion conditions: unilateral C5-C6 dorsal root transection depriving the contralateral cortex from forepaw somatosensory inputs, standard housing or an enriched environment promoting sensorimotor experience and social interactions. Behavioral tests were used to assess forelimb placement during locomotion, forelimb-use asymmetry, and forepaw tactile sensitivity. For each group, the time course of tissue loss was described and the gliosis volume over the first postoperative month was evaluated using an unbiased stereological method. Consistent with previous studies, recovery of behavioral abilities was found to depend on post-injury experience. Indeed, increased sensorimotor activity initiated early in an enriched environment induced a rapid and more complete behavioral recovery compared with standard housing. In contrast, severe deprivation of peripheral sensory inputs led to a delayed and only partial sensorimotor recovery. The dorsal rhizotomy was found to increase the perilesional gliosis in comparison to standard or enriched environments. These findings provide further evidence that early sensory experience has a beneficial influence on the onset and time course of functional recovery after focal brain injury.
منابع مشابه
Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats.
It is common following stroke to focus early rehabilitation efforts on developing compensatory use of the less-affected body side. Here we used a rat model of focal cortical infarct to examine how motor skill acquisition with the less-affected ("intact") forelimb influences sensorimotor function of the infarct-impaired forelimb and neural activity in peri-infarct cortex. Rats proficient in skil...
متن کاملLocal fluorouracil chemotherapy interferes with neural and behavioral recovery after brain tumor-like mass compression.
In this study, we investigated the impact of intracerebral delivery of chemotherapy on functional recovery from focal cortical tissue displacement, characteristic of brain tumors. Unilateral focal brain compression was induced by epidural implantation of an inverted hemisphere-shaped bead over the sensorimotor cortex. Microinjections of a total of 1mg chemoagent fluorouracil or the same volume ...
متن کاملDoes treatment with bone marrow mononuclear cells recover skilled motor function after focal cortical ischemia? Analysis with a forelimb skilled motor task in rats
Previous studies have shown sensorimotor recovery by treatment with bone marrow mononuclear cells (BMMCs) after focal brain ischemia. However, sensorimotor tests commonly used are designed to examine motor patterns that do not involve skill or training. We evaluated whether BMMCs treatment was able to recover forelimb skilled movements. Reaching chamber/pellet retrieval (RCPR) task was used, in...
متن کاملFunctional role of exercise-induced cortical organization of sensorimotor cortex after spinal transection.
Spinal cord transection silences neuronal activity in the deafferented cortex to cutaneous stimulation of the body and untreated animals show no improvement in functional outcome (weight-supported stepping) with time after lesion. However, adult rats spinalized since neonates that receive exercise therapy exhibit greater functional recovery and exhibit more cortical reorganization. This suggest...
متن کاملNeurobiology of Disease Diabetes Impairs Cortical Plasticity and Functional Recovery Following Ischemic Stroke
Diabetics are at greater risk of having a stroke and are less likely to recover from it. To understand this clinically relevant problem, we induced an ischemic stroke in the primary forelimb somatosensory (FLS1) cortex of diabetic mice and then examined sensory-evoked changes in cortical membrane potentials and behavioral recovery of forelimb sensory-motor function. Consistent with previous stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011